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ABSTRACT

We have lots of properties of traditional matrix algebra. Some of these properties are studied and extended in
[1-5]. Here we extend some more properties in extended matrix algebra on M (F), the set of all matrices over a given field

F[1, 3]. Also following [1-11], we are motivated to introduce some new properties in extended matrix algebra on M (F).
KEYWORDS: Eigen Value, Extended Matrix Algebra
Notations

(i) M5, (F) denotes the set of all m X n matrices over a given field F.

(ii) A, xn, € M(F) denotes Ay xn Is an m X n matrix in (F).

(iii) M,,(F) denotes the set of all n X n matrices over a given field F.

(iv) Opyxr, denotes the m X n matrix in M (F), of which all the entries are zero.

W) IfApun = (a”)mxn € M(F) and p, q are positive integers such that < m,q < n, then A,y , = (a”)pxq .

1. INTRODUCTION

Matrix algebra and Linear spaces of linear transformations of vector spaces (considering linear transformations as

matrices) are extended in [1, 3] as:
Definition (1.1) [1, 3]

Define ‘addition’ of matrices in M(F) by for all = (ai]-)mxn,B = (bij)pxq EM(F),A+B= (Cii)rxs’ where

r =max{m,p} ,s =max {n,q}and fori =1,2,...,7; j = 1,2,....5,¢;; = a{j +b{j ,
L ifl<is<m,1<j< . .
wherealfj:{a” if ‘ m' J n,forl=1,2,....,r;j=1,2,....,s
0, otherwise
b;i,if1<i<p,1<j<
andb{jz{ iy if ) p' J q,fori=1,2,....,T;j=1,2,....,s.
0, otherwise

Definition (1.2) [1, 3]

Define ‘multiplication’ of matrices in M(F) by for all A = (ai]-)mxn,B = (bij)pxq €EM(F),AB = (CU) ,

mxq

. . min {n,
where fori =1,2,....m; j=1,2,...,,¢j = k=1{ P} aikbk]-.
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84 Jayanta Biswas

Definition (1.3) [1, 3]

For m,n € N, we define I,,x,, as Lyxn = (5ij)mxn ,where fori = 1,2,...,m; j=1,2, ....,n,5ij = {é':;i :j
2 10 -1 4 (1) f
Example(l.l):LetAz(O 5 2 3 0>and= 1 2
-1 3 -5 7 2 2 1
RN
Then A + B = 3 0 landaB=[ 2 12)
-2 5 =5 7 2 18 -3
2 1 0 0 0

Definition (1.4) [1, 3]

Let R be a non-empty set on which two binary operations "addition and "multiplication are defined. Then the algebraic

structure (R, +,.) is said to be a weak hemi-ring if
(i) (R, +) is a commutative monoid, the identity element is called 'zero', denoted by 0. (ii) (R,. ) is a semi-group.
(iii) Multiplication is distributive over addition. (iv) a.0 # 0,0.a # 0, in general, for a € R.

Theorem (1.1) [1, 3]
The algebraic structure (M(F), +, .) is a weak hemi-ring having zero 0;x; = (0)1x1-

Note (1.1) [3]

I
Letm,n € Nand A = (aij)mxn € M(F) be arbitrary. Let I, ny = (Bp:l(n) , where By, € M(F) is arbitrary and

p € N is arbitrary and let [F(m® = (Im Bqu) , where By, € M(F) is arbitrary and q € N is arbitrary. Then it is clear
that A. Iy = A and I5™D A=A ; but Ipeyn). A # A&AIP™D = A | in general. Again, I,,,A=A=A.I,, But
I,.A#+A&A. L, #A,ifm=%n.

Again, it is obvious that Iy xnAmxp = Amxp If f 1 = mand Apxplnsxn = Apxn Iff m =1 ; but

Anxp

InxnAmxp = ( ) F Apxp, in general, and I Ayyp = Apxp # Amxp if n<m

O(m—n)xzo
Also, Apsnlmxn = (Apxm  Opxn-m)) # Apsn , in general,and Apunly = Apxm # Apxn if m <n
Now it can be easily proved that for given positive integers m, n, for all A, € M(F),
Amsnlmxn = ImxnAmxn = Amxn iffm=n.

Theorem (1.2) [3]
(M xn » +,.) forms a ring with zero O,y

Definition (1.5) [3]

For a given nonzero matrix Ap,x, € M(F) , if there exists a matrix Byyq € M(F) such that AyxnBpxq = Imxq

then B, is called a right inverse of Ay and if BpygAmxn = Ipxn, then By, is called a left inverse of Ay xp, -
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Theorem (1.3) [3]

Let m<n . Then for two non-zero matrices Axn ,»Bmxn € M(F) , AmsnBmxn = Imxn iff ApmxmBmxm =

BpsxmAmxm = Ly and for j = m+ 1,m + 2, ....,n, each j* column B; (say ) of By, is zero.

Corollary (1.3.a): Let n <m . Then for two non-zero matrices Apxn » Bmxn € M(F), ApmxnBmxn = Imxn iff

ApsnBnxn = BpuxnAnxn = Ipand fori = n+ 1,n + 2,....,m, each i*" row A; (say ) of A, is zero.
Corollary (1.3.b): Let m < n . Then for two non-zero matrices A,;xz , Bnxn € M(F),
ApsinBmxn = BmxnAmxn = Imxn T AmscmBmxm = BmxmAmxm = Im and
forj=m+1m+2,...,n,each jth column of A,,x, and B, «, are zero.

Corollary (1.3.c): Let n<m . Then for two non-zero matrices Apmxn,Bmxn € M(F) , AmxnBmxn =
BriscnAmxn = Imxn iff AnxnBrxn = BnuxnAnxn = Ip and fori =n+ 1,n + 2,....,m, each i*" row of Ay, and By, are

ZEero.
Theorem (1.4) [3]
Let Ayyxn » Bpxg € M(F) . Then Ay Bpxq = Linxq iff one of the following four conditions hold.

(). ApmxnBnxm = Ly and Amxn(BmH,Bm+2,.....,Bq)pX(q_m) = Omxg-m) » if n<p,m<q; where for

j=m+1,m+2,..,q;B;is the j** column of B

pXq
/ 2\
Rq+ |

(ii). AgxnBnxq = I, and [ .
K Rom /(m—q)Xn

where fori = q+1,q + 2, ....,m ; R; is the i row of Ay, -

Byxq = Om-qyxq - ifn <p,m>gq;

(iii). AmxpBpxm = Im and Apsn (Bms1 » Bz » - ..,Bq)px(q_m) = Opx(gemy -ifn >p,m < q.
Rq+1
) Rg+2 .
(iv). AgupBpxq = I and Bpxq = Om-q)xq - ifn>p,m>q.
™/ (m-q)xn

Theorem (1.5) [3]

For a given nonzero matrix Ay, in M(F), if there exists Byyq in M(F) such that A,unBpxg = Imxq. then

m < n, except the case m > n > q.

Theorem (1.6) [3]
For a given nonzero matrix By, in M (F), if there exists Apxp, in M (F) such that
AmxnBpxq = Imxq then ¢ < n, except the case ¢ > n > m.

Again, we have the following properties in [2] and [5].
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Theorem (1.7) [2]
For any two matrices Ayxn , Byxqg € M(F) , (Amxn + Bpxq)T = Afuxn + Bpxq
Theorem (1.8) [2]
For any two matrices Apxn » Byxq € M(F) , (AanBpxq)T = Bl wqAmxn
Definition (1.6) [2]
Let Apysn = (aij)mxn €M(F).If m <n,thenfori=1.2,..,m
j=ii+1,..,i+ (n—m), ai]-'s are called the diagonal elements of A, ., -
If m >n, thenforj =1,2,..,n; i =j,j +1,..,j + (m —n), a;;'s are called the diagonal elements of A, .
In each case, the portion of A,,«, , formed by these diagonal elements is called the diagonal of 4,
All the elements of 4,,, , other than the diagonal elements, are called the non-diagonal elements of A, -
Definition (1.7) [2] (a)
(a) A matrix A, xn = (aii)an € M(F) is said to be symmetric if, when m < n , then for
i=23,...mj=12,....,m—1,ifi > j then aij = Qj(i+n-m) and when = n , then for
j=23,...n;i=12,...,n—1,ifi <j then Qij = A(jrm-n)i -

(b) A matrix A xp, = (ai j)mxn € M(F) is said to be skew-symmetric if all the diagonal elements of A,,, are
zero and when m <n, then fori =2,3,..,m; j=12,....,m—1, if i > j then aij = —Gj(i4n—m) and whenm =>n ,

then for j = 2,3,..,n; i =12,...,n—1,if i <jthen a;; = —a(jrm-ny; -
(¢) A matrix Axn = (aii)an € M(F) is said to be weak skew-symmetric if, when <n , then for i =
23,..m;j=12, .. m—1,ifi > jthen Qjj = —Qj(irn-m) and whenm =>n,thenforj=2,3,..,n; j=12,...,n—

1 . if i <] then aij = —a(j+m_n)i .

Example (1.2)

-1 3 -5 7 -1 -1 -8 9
3 =4 0 3 -4 1

diagonal elements and the non-bold elements are non-diagonal elements. Also, A is symmetric, B is skew-symmetric and C

0 1 -3 2 1 -3
2 1 0 -1 0 0 4 / 0 5 4 \
In the real matricesA=( 0 5 2 3 |,B=] 0 0 0 |,C={1 0 8 |, the bold elements are
0 0 \ /

is weak skew-symmetric.
Theorem (1.9) [2]

Transpose of a symmetric, skew-symmetric and a weak skew-symmetric matrix is symmetric, skew-symmetric

and weak skew-symmetric respectively.
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Theorem (1.10) [2]
For any two matrices A,B € M (),
(i). If A, B be symmetric, then the matrix A + B is not, in general, symmetric.
(ii). If A, B be skew-symmetric, then the matrix A + B is not, in general, skew-symmetric.
(iii). If A, B be weak skew-symmetric, then the matrix A + B is not, in general, weak skew-symmetric.

(iv). if A, B be two symmetric (or skew-symmetric) matrices of the same order such that AB = BA, then AB may

not be a symmetric matrix (or skew-symmetric).
Theorem (1.11) [2]

For any square symmetric matrix A and any matrix P in M (F), PTAP is a symmetric matrix; but the result fails to

be hold good if A be a non-square symmetric matrix.
Note (1.2) [2]
Let A,,xn € M(F) with # n . Then obviously

Aan¢%(Aan+(Aan)T)+%(Aan—(Aan)T), as the matrix on the right hand side is of order

max{m, n} X max{m,n} # (m, n), provided Char(F) # 2. Therefore a natural question arises. Is it possible to express a
matrix over a field as a sum of a symmetric matrix and a skew-symmetric matrix? The answer to this question is

affirmative, given by means of the following proposition.
Theorem (1.12) [2]

Every matrix over a field F can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix,

provided Char (F) # 2; but the expression is not, in general, unique.
Proof

LetA = (aij)mxn € M (F) be arbitrary. If m = n, then the result is obvious, as
Apn = %(Amx,l + (Amse)T) + % (Amxn — (Amse)T). (Since Char (F) # 2, hence 271 Exists in F).

Letm <n.LetB = (bi j)mxn be a symmetric matrix and C = (ci j)mxn be a skew-symmetric matrix in M (F)
suchthat=B + C . i.e., (ai]')an = (bi]')an + (C,:]')an (1)
Then for = 1,2, el , M, ] = 1, 2, e, Ly b” + Cij = aij (2)

Since m < n and B, C are symmetric and skew-symmetric matrices, respectively, hence the diagonal elements of

B and A are same (since the diagonal elements of C are zero). Thus the diagonal elements of B are determined.

Now for the non-diagonal elements of B and C we have for i = 2,3,....,m; j=1,2,....m—1,ifi > j,
then bl.] = bj(i+n—m) (3)
and Cij = _Cj(i+n—m) (4)
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From (2) we have for = 2,3,...,m; j=1,2,...,m—1,ifi > j, then b;; + ¢;; = a;; 5
And bj (i4n-m) + Cji+n-m) = Qi+n-m) > 1€, bij = Cij = Gjien—m) (6)
(by (3), (4)).

From (5) and (6) we get

i=23..,m;j=12..m—1,if> ], thenb; = 27*(a;; + aj(i+n-m)) 7
¢ = 27M(ay) = Gin-m)) )

(since Char (F) # 2, hence 27! exists in F).

bjGisn-m) = bij = 27 (aij + &irn-m)) ®)
(by (7))
Citian—m) = —Cij = =271y = Gi(i+n-m)) 0
(by (8))

Thus B and C are determined.

T

1fm > n, then similarly, we have ((a;;), ) = Enxm + Faxm an
where E,, «p, 1S @ symmetric matrix and F,y,, is a skew-symmetric matrix.

From (11), we get A = (a;;) = (Enxm + Fuxem)” = Enxn)” + (Faxm)” (12)

Since E is a symmetric matrix and F, is a skew-symmetric matrix, hence (E, T is a symmetric matrix
nxm nxm nxm

and (Fp, ;)7 is a skew-symmetric matrix. Hence the result

To prove that the expression is not unique, it is sufficient to consider some examples. Consider the matrix

4
3 _1 T 1 T

0 .ThenA—;(A+A)+5(A—A) 13)
0

3
1
4
-2
and % (A + AT) is symmetric and % (A — AT) is skew-symmetric .

0 0 1 4
+<—1 0 o0 3) (14)

-4 -3 0 0

1
Again, we see that A = i
2

P w N
|
RPN

And the first matrix of right hand side of (14) is symmetric and the second one is skew-symmetric.
Clearly the expressions (13) and (14) are distinct.

Again, consider another example in which
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2 1 -1 9 0 0 0 1

2 1 -1 -1 5 1., — o2 5 0 o > 2
A=(-6 3 2 5 0).Thend=|"2 5 1]+ 2 o 1L (15)

4 -1 3 2 9 _1 2 _1 1 2

6 2 2 3 2 6 2 2 00 0

And the first matrix of right hand side of (15) is symmetric and the second one is skew-symmetric.

2 1 -5 -2 5 0 0 4 1
AgainA=<—2 3 2 4 0>+<—4 0 0 1) (16)
5 0 3 2 6 -1 -1 0 0

And the first matrix of right hand side of (16) is symmetric and the second one is skew-symmetric.
Clearly the expressions (15) and (16) are distinct.
Note (1.3) [2]

From the proof of theorem (1.12) we observed that any m X n matrix over a field F can be expressed as the sum
of a symmetric and a skew-symmetric matrix of the same order. Therefore a natural question arises. Is it always possible to
express a matrix Ayxp as Apyxn = Bpxq + Crxs » Where m,n, p, q, 7, s are given positive integers such that m = max {p,r}
andn = max {q,s} and B, is symmetric and C, is skew-symmetric and (p,q) # (r,s) ? The answer to this question

is given by means of the following proposition.

Again from theorem (1.12) it is observed that, if we wish to express A,,xn @S Amxn = Bmxn + Cmxn Only, where

Bpxn 1s symmetric and C,,«,, is skew-symmetric, then this expression unique.
Theorem (1.13) [2]
Let Ayxn € M(F) and p, q, 1, s be positive integers such thatm = max {p ,r},

n = max{q,s}and (p,q) # (r,s). Then A,,«, can be expressed as sum of a symmetric matrix of order p X q

and a skew-symmetric matrix of orderr X sif i) p=2q=s=>ror(ij)g=p=r =sor
(i).p=zqg=s,p=2r=sor(ivyigq=p=r,q=s=r.
And this expression is not possible, in general, in other cases, i.e.,if (v)p =1 >s > q or
(vi).g=zs=zr=zpor(vih)r=p=qg=sor(vii)s=qg=p=ror
(ix).p=zqp=2r,s=2qg,s=2rorX)=p,q=s,1r=p,7r=S5s.
Definition (1.8) [5]
A matrix A,,x,, € M(F) is said to be an idempotent matrix if A2,;, = A;xn -
Theorem (1.14) [5]
Let Apxn € M(F) be an idempotent matrix. Then I,y g — Amxy, is idempotent iff p,qg = mand,q =n.
Theorem (1.15) [5]

Let Apxns Bpxg € M(F) such that Ayun + Byxg = Irxs and ApyxnBpxg = Omxq » Where 7 = max{m,p},s =

max {n, q}. Then Ap,x, and By both are idempotent if n = p = m, q.
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Theorem (1.16) [5]

If m,n,p,q € N such that p,q > m and p,q = n and if A,x, € M(F) be an idempotent matrix, then Vk €
N, (Ipxq + Amxn)” = Iyxq + X = 1) A
Definition (1.9) [5]

The trace of a matrix A,,x, € M(F), denoted by trA,,,«n, , is defined as the sum of all diagonal elements of A,y -
Theorem (1.17) [5]

For any A,xn € M (F), trAmsn =trAL .
Theorem (1.18) [5]

For any two matrices Ay;xpn, Bpxq € M(F),

() tr(Amsxn + Bpxq) # trAmxn + trBpyxq, in general.

(i) tr(AmxnBpxq) # tr(ByxqAmxn)- in general.
Again in [4], it is stated that, for a given A,,x, € M (F), if there exists B,,x, € M(F), such that A,,xnBmxn =

BrsnAmxn = Imxn » then By, ., is unique and we call B, as the inverse of A, , and denoted by A%,

((A'r_nlxm Omx(n—m)) ) if m<n
-1
Clearly By, = A7k, = # ( An ) Jifm>n
O(m—n)xn
ALl ifm=n

Again in [4] Sherman-Morrison Rank One Update Formula and Sherman-Morrison-Woodbury Formula [8] in

traditional matrix algebra are extended in extended matrix algebra on M (F).

Theorem (1.19) [4]

Let m,n € N with m < n and

€1
= (:) D=(d, dy ..

mx1

dp 0 0 o 0)gxn € M(F).

Then (I + CD) ™ = Iy — o, provided (s + CD) ™ exists and 1+ DC # 0.

Corollary (1.19)[4]: Let m,n € N with m > n and

,D = (dl dz e dTl )1)(71 .
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Then (I, + CD) ™Y =1y — % , provided (Ix, + CD) ! existsand 1+ DC # 0 .
Theorem (1.20) [4]

Let m,n € Nwithm < n and A,,«n, = ((aij)mxm Omx(n—m)) )

€1
(=)
C=K/ ,D=(d, dy ... dn, 0 0 .... 0)1ixn € M(F).
Cm mx1
-1 _ g-1 Ar_nlxnCDAr_nlxn : -1 -1 .
Then (Apxn + CD) = A — [ pai g » Pprovided (Apxn + CD)™' and A;}, both exist and 1+

DA;L,C #0.

a. . e w
Corollary (1.20): Let m,n € Nwithm > n and 4,,,«,, = <( ”)nxn> ,C=| ¢ ,

(m—-n)xn

0 mx1
D=(dy dy .. dn)ixn € M(F).
-1 _ g-1 Ar_nlxnCDAr_nlxn : -1 -1 .
Then (Apxn + CD) ™! = Arin — —pai ¢ »provided (Apxn + CD)~1 and A3, both exist and

1+ DALLC # 0.
Theorem (1.21) [4]

Letm,n,k € Nwithm < nand A,,x,, = ((aij)mxm Omx(n—m)) ,

¢= (Cij)mxk D= ((dij)kxm ka("—m))kxn € M(F).
Then (Aan + CD)—l = A7_nl><n — A;nlxnC(]k + DA;nlxnC)_lDAr_nlxn , provided (Amxn + CD)—l i A7_n1><n and

(I, + DAL, C) 7Y exist .

. (aij) (ciy)
Corollary (1.21) [4]: Let m,n ,k € Nwithm > n and 4,,»,, = nxn ) C = nxk |

(m-n)xn O(m—n)xk

D= (di]-)kxn € M(F). Then (Axn + CD)™Y = A% — A7 C(I + DAL, C) DALY, . provided (A,xy + CD)™1,

AL, and (I, + DAL, C) ™1 exist
2. MAIN RESULTS

Here we shall study some more properties of extended matrix algebra.
Theorem (2.1)

For any three matrices A, xn, Bmxn, Cnxm € M(F) ,

(i) tr(Ayxn + Binxn) = trApmxn + trBoyxn.

www.iaset.us editor @iaset.us



92 Jayanta Biswas

(ii) t7(Apmsn Bmxn) # tr(BmxnAmxn), in general.
(iid) t7(AmxnCoxm) = tT(CrxmAmxn) -
iv) tr(Apxn + Coxm) # trApxn + trCpym, in general.
Proof
Let Ayxn = (aii)an’BmX” = (bif)an s Cosen = (Cij)mxn .
(i) We have A,,,«, + Bpuskn = (dij)mxn , where
fori=1,2...,m; j=1,2...,ndj=a;+by 17)

From (1) it is clear that the diagonal elements of A,,«, + By, are the sum of the corresponding diagonal

elements of A, and B« -

Hence tr(Apmxn + Bmxn) = trlmsn + trBrxn.

1 0 -1 2 2 3 10
(ii) Consider the real matrices A = (—2 2 10 ) and = ( 3 0 -2 2) .
3 1 2 4 -1 2 4 3

31 -3 -3 -1 7 3 8
Then AB = (1 -4 -2 7 ) and = <—3 -2 -7 —2) .

7 13 9 8 7 8 11 14
NowtrdB=(3-4+9)+(1—-2+8)=15andtrBA=(-1-2+11)+ (7 -7+ 14) = 22.
Therefore trAB # trBA. Hence the result
(>iii) We have A,,,xnChxm = (eii)me , where
Fori=1,2,...,m; j=1,2,...,m, e;; = ¥}_; Qi Cy; (18)
From (2) it is clear that the diagonal elements of A« Chxm are given by
for=1,2,...,m, e; = Yp—; QirCri 19)
Again CpymAmxn = (fij)nxn , Where
Fori=1,2,...,m j = 1,2,....,n, fij; = X}L; Cix O (20)

From (4) it is clear that the diagonal elements of C,,x; Amxn are given by

For = 1, 2,....,n,fii = 27]?:1: Cik Ay (21)
Now tr(ApxnCnxm) = Xin1 €ii = Xieq Lp=i ik Cri (22)
(by (19)).

And tr(CpxmAmxn) = Xi=1 fi = Xi=1 Zk=i Ci @i (by 21))
= YR XM cpiaix (replacing the indices i, k by k, i respectively )
= Z‘{il Z‘l’cl=i Ak Cri = tT (ApmxnCnxm) (by (22)) .
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Therefore (A,,xnCnxm) = tr(ChoxmAmxn) -

1 0 -1 2 i ; 3
(iv) Consider the real matricesA=<—2 2 1 0 >and= 5 2 41}
3 1 2 4 2 4 3
3 1 2 2
-1 5 5 0
Then +C = 8 3 3 4
2 4 3 0

Nowtrd=(14+24+2)+(0+14+4)=10,trC=2+3+1)+(1+2+3)=12and
tr(A+C)=3+5+3+0=11=+ 22 = trA + trC. Hence the result

Definition (2.1)
A matrix A,,«, € M(F) is said to be a diagonal matrix if its non-diagonal elements are all zero.

Theorem (2.2)

If A, B € M(F) be of the same order such that A is a diagonal matrix with no two diagonal elements are equal, and

B commutes with A, then B may not be a diagonal matrix.
Proof

-4 4 -1 0 O
Consider the real matrix A = ( 0 -3 3 0 0 ) Clearly, all the diagonal elements of A are distinct.
0o 0 1 -2 2

68 —12

= == -1 —4 4

And, consider the real matrix B = 103 153 —3 —4 4 | whichisclearly not a diagonal matrix.

0 0 1 -2 2

—272 308 —272 308
N EECIET) -9 2 =2 N EETIET) -9 2 2 B
0 0 1 -2 2 0 0 1 -2 2

We know that, for any positive integral power of a square symmetric matrix is symmetric; any positive even
integral power of a square skew-symmetric matrix is symmetric and any positive odd integral power of a square

skew-symmetric matrix is skew-symmetric. Let us see whether this result holds good in extended matrix algebra.
Theorem (2.3)
(i) Any positive integral power of a symmetric matrix in M (F) may not be symmetric.

(i) Any positive even integral power of a skew-symmetric matrix in M (F) may not be symmetric and positive

odd integral power of a skew-symmetric matrix in M (F) may not be skewed-symmetric.

Proof

1 2 3 45
(i) For example, consider the real symmetric matrix = <4 -1 2 0 3 )
5 3 1 -2 4
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24 9 10 -2 23
Then A> = (10 15 12 12 25 | Which is not symmetric.
22 10 22 18 38
0 0 3 4 5
. . . .. _[-3 0 0 -6 7
(ii) Consider the real skew-symmetric matrix = | 4 6 0 0 -8
-5 =7 8 0 0

-32 -10 32 0 -24
Then B? = —3{)8 402 __1527 __5122 _2125 which is not symmetric.
-11 48 —-15 22 —138
—-98 192 —-96 —-68 —486
Again B3 = %822; _229528 —?}20 _1_3722 902 which is not skew-symmetric.
—-194 -244 143 332 371

Definition (2.2)
A matrix A,,y, € M(F) is said to be involuntary matrix if A%, = L,y -

We know that for any two matrices A, xn, Buxm € M (F), the matrix

L = ( In - anmAmxn anm

is involuntary. In theorem (2.4) we shall study about this
2Am><n _AmannxmAmxn Amannxm - Im)l Vot Y ( ) W uy " !

property in extended matrix algebra.
Theorem (2.4)

Let Apxn, Bpxq € M(F) . Then the matrix

Lyyn — ByxgA B
L =( pxmo Epxarimxn pxa )ma not be involuntary.
2Am><n - AanBpqumxn Amanqu - Iqu Y Vot Y
Proof
1 0 1 13 g g
Consider two real matricesAzy3 = ( 2 3 —1>,B4><3 = _1 1 2
I3 — Byy3A B
Then it can be easily verified that L = ( 43 X333 a3 )
! 1y venii 7x6 2143><3 - A3><SB4-><3A3><3 A3><3B4><3 - I3><3
-2 0 -2 1 2 3
( -7 -5 5 -3 2 0 \|
3 7 -3 1 -1 2
= -1 -4 -2 3 2 1 |is notinvoluntary.
4 7 0o -1 -3 -1
-26 —-19 13 -8 10 4
17 15 -12 7 -5 1
Note (2.1)

We know in traditional matrix algebra that, if a square matrix A over a field F' of characteristic zero, be an

orthogonal matrix, i.e., if AAT =, thendAT = ATA = I, and the set of row vectors and the set of column vectors of A are
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orthogonal sets. Here we introduce the definition (2.3) of right orthogonal and left orthogonal matrices and the in theorem

(2.5) we study about properties of orthogonal matrices in extended matrix algebra.
Definition (2.3)
A matrix Az, € M (F) is said to be right orthogonal I A,,xnA%xn = Imxim - Amxn 1S said to be left orthogonal if
AxnAmxn = Inxn -
Theorem (2.5)

(i) A right orthogonal matrix in M (F) may not be left orthogonal and a left orthogonal matrix in M (F) may not

be right orthogonal.

(i) If a matrix A,,«, € M (F) be right orthogonal, then the set of row vectors of A,,x, is an orthogonal set of
vectors over the field F. And if 4,,«, be left orthogonal, then the set of column vectors of A4,,, is an orthogonal set of

vectors over the field F.

(iii) If a matrix A,,x, € M (F) be right orthogonal as well as left orthogonal, then m = n and A,,x, is an
orthogonal matrix; and the set of row vectors as well as the set of column vectors of 4,,,, are orthogonal sets of vectors

over the field F'.

(iv) If a matrix A,,«, € M(F) be right orthogonal then it is a regular element in the weak hemi-ring(M (F), +,.);

and if it is left orthogonal then it is a regular element in the weak hemi-ring(M (F), +,.).
Proof

Trivial.
Note (2.2)

We know in traditional matrix algebra that, given a system of n linear equations in n unknowns such that the
coefficient matrix is non-singular, then the system is consistent and has a unique solution. Also, we know that, given a
system of m linear equations in n unknowns such that the rank of the coefficient matrix is equal to the rank of the
augmented matrix, then the system is consistent. In theorem (2.6) and corollary (2.6) we shall study about this property in

extended matrix algebra.
Theorem (2.6)
() [2)
b2 ‘x2
[ ~~|em (F) and Xpx1 = | " | be an unknown matrix over the field F and
\in/ \%)

char(F) =0 . Also, let there exists Cyys = (Cij)rxs € M(F) such that CrysAmxn = Lrxn -

Let Ay = (aij)mxn yBmx1 =

Let us consider the system of linear equations A,y Xpx1 = Byt (23)
Then (i) (23) is consistent and has a unique solution if eitherr =n=porp =r < n.

(ii) (23) is consistent and has many solutions ifeitherr =n <porr<n=porr<n<porr<p<n.
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(iii) (23) is consistent and has a unique solution if eitherr =n >porp <r<norr >n=porr >n > p,

g

p

provided in each of the cases, C,xsBpx1 1s of the form | ; otherwise (23) is inconsistent.

0
| 0

(iv) (23) is consistent and has many solutions if eithern <r < porn <p <rorp =r > n; provided in each of

dy
dy
the cases, CyysBnx1 is of the form | %" | ; otherwise (23) is inconsistent.
0
0 rx1
Proof
From (23) we get Crys{AmxnXpx1} = CrxsBmxa. This implies that {C,xsAmxn}Xpx1 = Dyx - (24)
dy
dy min {s,m}
where Dy.yq = | =+ |andfori=1,2,....,7,d; = Yo" Cigby .
d,

Now considering several cases, the remaining part of the proof is just now routine check.

(i) 3
bz X3
Corollary (2.6): Let Ay, = (aij)mxn ,Buxi =| = | € M (F) and Xpx1 = | " | be an unknown matrix over
b, Xp
the field F and char(F ) = 0 . Then the system of linear equations A, xnXpx1 = Bmx1 i consistent iff rank of A, = rank
of I‘men (= (Amxn Bmxl)) .

Definition (2.4)

Amxn € M(F) and char(F) = 0. Let X,»; be an unknown vector. If there exists A € F such that the system of

equations (Apxn — Alpxn)Xpx1 = Omxq has a non-zero solution in M (F), then 4 is called an eigen

value of A, and corresponding non-zero vector in M (F), obtained by solving this system of equations, is called

an eigen vector of A4,,«, corresponding to eigen value A.

Theorem (2.7)
Apsn € M(F) and char (F) = 0. Let A (€ F) be an eigen value of 4,,,. Then
(i) Atleast m — n + 1 rows of (A, xn — Alyxy) are redundant, provided m > n.
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(ii) Atleast n — m + 1 columns of(A4,,,x,, — Al;uxr) are redundant, provided m < n.

Proof

Trivial.
CONCLUSIONS

Further study regarding more properties of extended algebra may be continued.
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